A New Markov Chain Based Acceptance Sampling Policy via the Minimum Angle Method

Authors

  • Akhavan Niaki
  • Fallah Nezhad
Abstract:

We develop an optimization model based on Markovian approach to determine the optimum value of thresholds in a proposed acceptance sampling design. Consider an acceptance sampling plan where items are inspected and when the number of conforming items between successive defective items falls below a lower control threshold value, then the batch is rejected, and if it falls above a control threshold value, then the batch is accepted and if it falls within the thresholds, the process of inspecting the items continues. A decision is made to accept or reject the batch. We begin with developing a Markov model for determining performance measures of sampling designs, resulting in an acceptance sampling plan optimized based on the minimum angle method. Then, the performance measures of the acceptance sampling plan are determined and the optimum values of thresholds are selected in order to optimize the objective functions. In order to demonstrate the application of the proposed methodology, numerical examples are illustrated.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Cool walking: A new Markov chain Monte Carlo sampling method

Effective relaxation processes for difficult systems like proteins or spin glasses require special simulation techniques that permit barrier crossing to ensure ergodic sampling. Numerous adaptations of the venerable Metropolis Monte Carlo (MMC) algorithm have been proposed to improve its sampling efficiency, including various hybrid Monte Carlo (HMC) schemes, and methods designed specifically f...

full text

An optimization model for designing Acceptance Sampling Plan Based on Cumulative Count of Conforming Run Length Using Minimum Angle Method

The purpose of this article is to present an acceptance sampling plan based on cumulative count of conforming using minimum angle method. In this plan, if the number of inspected items until rth defective items is greater than an upper control threshold then lot is accepted and if it is less than a lower control threshold then the lot is rejected and if it is between control thresholds, process...

full text

Markov Chain Monte Carlo posterior sampling with the Hamiltonian method

The Markov Chain Monte Carlo technique provides a means for drawing random samples from a target probability density function (pdf). MCMC allows one to assess the uncertainties in a Bayesian analysis described by a numerically calculated posterior distribution. This paper describes the Hamiltonian MCMC technique in which a momentum variable is introduced for each parameter of the target pdf. In...

full text

Generalizing Informed Sampling for Asymptotically Optimal Sampling-based Kinodynamic Planning via Markov Chain Monte Carlo

Asymptotically-optimal motion planners such as RRT* have been shown to incrementally approximate the shortest path between start and goal states. Once an initial solution is found, their performance can be dramatically improved by restricting subsequent samples to regions of the state space that can potentially improve the current solution. When the motion planning problem lies in a Euclidean s...

full text

A New Optimization Model for Designing Acceptance Sampling Plan Based on Run Length of Conforming Items

The purpose of this article is to present an optimization model for designing an acceptance sampling plan based on cumulative sum of run length of conforming items. The objective is to minimize the total loss including both the producer and consumer losses. The concept of minimum angle method is applied to consider producer and consumer risks in the optimization model. Also the average number o...

full text

A new machine replacement policy based on number of defective items and Markov chains

  A novel optimal single machine replacement policy using a single as well as a two-stage decision making process is proposed based on the quality of items produced. In a stage of this policy, if the number of defective items in a sample of produced items is more than an upper threshold, the machine is replaced. However, the machine is not replaced if the number of defective items is less than ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 3  issue None

pages  104- 111

publication date 2012-04

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023